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INTRODUCTION

• The pr imary motivation for  the spher ical tokamak (ST) concept is its predicted high-ββββ limit [1]. Record
value of volume-averaged ββββ ≅≅≅≅ 40% was achieved in START NBI-heated plasmas [2]. The concept of
high-ββββ burning plasma STs is considered [3].

• Alfvén instabilities are of major  concern for  magnetic fusion as they can lead to losses/redistr ibution of
fast ions including alpha-par ticles.

• Lots of Alfvén instabilities excited by NBI-produced energetic ions have been observed on START and
MAST:
- fixed-frequency modes in TAE and EAE frequency range;
- frequency-sweeping “ chirping”  modes;
- fishbones;
- modes at frequencies above the AE frequency range.
These instabilities in ST exper iments:

- provide a test-bed for  testing theoretical models on Alfvén instabilities in ITER;

- stimulate exper imental studies of energetic-ion-dr iven instabilities over  broad range of plasma
beta, up to ββββ(0) ≥≥≥≥ 1 proposed for  burning STs [3]

[1] Y-K M Peng and D J Str ickler , Nuclear  Fusion 26 (1986) 769
[2] M P Gryaznevich et al., Phys. Rev. Lett. 80 (1998) 3972
[3] H R Wilson et al., Proc. 19th IAEA Fusion Energy Conf. (2002) IAEA-CN-94/FT/1-5
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WHY ALFVÉN INSTABILITIES ARE COMMON IN STs?

• Tight aspect ratio (R0 /a ∼∼∼∼ 1.2÷÷÷÷1.8) limits the value of magnetic field at level BT ∼∼∼∼
0.15÷÷÷÷0.6 in present-day STs ⇒ Alfvén velocity in ST is very low

VA = BT / (4ππππnimi)
1/2≅≅≅≅ 106 ms-1 (START)

(compare, e.g. to Joint European Torus (JET), where VA ≅≅≅≅ 7××××106 ms-1)

• Even a relatively low-energy NBI , e.g. 30 keV hydrogen NBI  on START had speed

VNBI ≅≅≅≅ 2.4××××106 ms-1 > VA ,

• The super-Alfvénic NBI  can excite Alfvén waves via the fundamental resonance VNBI =
VA. Free energy source for  the Alfvén instability: radial gradient of beam ions,
(γγγγ/ωωωω)AE ∝∝∝∝ - q2rAE(dββββbeam/dr)
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WIDE RANGE OF PLASMA / BEAM PARAMETERS ON STs

Ratio ββββfast / ββββthermal in STs can be higher  than what is obtained in other  tokamaks
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both ‘per turbative’  AEs (TAEs) and ‘non-per turbative’  Energetic Par ticle Modes can exist
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WIDE RANGE OF PLASMA / BEAM PARAMETERS ON STs

Thermal plasma ββββthermal can be as high as ββββthermal(0) ∼∼∼∼ 1. High beta can affect Alfvén
instabilities in two ways (at least).

1) High plasma pressure suppresses TAEs;

2) Thermal ion Landau damping plays a stronger  role. Indeed, since

ββββi ≡≡≡≡ 8ππππniTi/BT
2 =(2Ti/mi)××××(4ππππnimi/ BT

2)=(VTi/VA)2

   Alfvén waves interact stronger with thermal ions as ββββthermal increases. L imiting cases:
low-ββββ discharges:
VTi << VA ≤≤≤≤ Vbeam <<VTe. Instability is determined by fast ion profile, while thermal
ions play a stabilising role (via V ||||||||i = VA/3 resonance);
discharges with ββββi ∼∼∼∼ 1:
VTi ∼∼∼∼ VA << Vbeam <<VTe. Stability/instability is determined by thermal ions
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OBSERVATIONS ON START (LOW-ββββ DISCHARGES)

• START: R0 ≈ 0.3÷0.37 m; a ≈ 0.23÷0.3 m; IP ≈ 300 kA; B0 ≈ 0.15÷0.6 T

• Hydrogen beam co-injected into D plasmas: ENBI ≅ 30 keV, PNBI ≤ 0.8 MW

• Modes with fixed frequencies fAE ≅ 200-250 kHz (#35305), lasting for 1-5 ms, were
observed in pulses with PNBI ≤ 0.5 MW and in early phase of some pulses with PNBI ≤ 0.8
MW, when ββββT≤≤≤≤3-5%

• Mode frequency ∼ TAE frequency fTAE ≡ VA / 4πqR0 ∼ 200 kHz

• Poloidal mode numbers of the excited modes, m = 1-4, are in agreement with the strongest
drive estimate for TAE, ∆∆∆∆orbit∼∼∼∼rTAE/m

• Both Toroidal and Elliptical AEs (frequency range fEAE ≈ 2 fTAE) were observed
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Mirnov coil signal Fourier power spectra of:
(a) fixed-frequency TAE at t ~ 26ms, START, shot #35305, ββββ < 3%;   
(b)   fixed-frequency EAEs in the EAE gap, t ~ 26.7ms, START #36484, ββββ ~ 4%.
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OBSERVATIONS ON MAST (LOW-ββββ DISCHARGES)

• MAST: R0 ≈ 0.9 m; a ≈ 0.7 m; IP ≈ 1.35 MA (achieved in 2003); B0 ≈ 0.4÷0.7 T;

•  D beam co-injected into D plasmas: ENBI ≅ 45 keV, PNBI ≤ 3.2 MW

• Both TAE and EAE observed on MAST, but the modes are longer lasting (>20 ms), more
numerous, with a broader range of unstable n’ s. Fine “ pitchfork”  splitting of the spectrum is
often observed (as shown in the Figure (b) for MAST discharge #2884).
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NONLINEAR EVOLUTION OF TAE INSTABILITY

0
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Non-linear  TAE behaviour  depends on competition between the field of the mode that tends to flatten
distr ibution function near  the resonance (effect propor tional to the net growth rate γγγγ≡≡≡≡γγγγL- γγγγd) and the
collision-like processes that constantly replenish it (propor tional to ννννeff)
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NONLINEAR EVOLUTION OF TAE INSTABILITY
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derived in [4] describes four different regimes of TAE:
a) Steady-state (observed);
b) Periodically modulated (observed as ‘pitchfork-

splitting’  effect);
c) Chaotic;
d) Explosive regimes of TAE-behaviour as functions of

ν≡νeff /γ

• Explosive regime in a more complete non-linear model [5] leads to frequency-sweeping
‘holes’  and ‘clumps’  on the perturbed distribution function.

[4] H.L .Berk, B.N.Breizman, and M.S.Pekker , Plasma Phys. Reports 23 (1997) 778
[5] H.L .Berk, B.N.Breizman, and N.V.Petviashvili, Phys. Lett. A234 (1997) 213



S.E.Sharapov, M.P.Gryaznevich et al, 10th ST Workshop, 29 September - 1 October 2004, Kyoto, Japan

 

11

ON THE HOLES AND CLUMPS THEORY

• Beyond the ‘explosive’  regime, theoretical prediction shows two long-living thermal fluctuations on
the per turbed distr ibution function.

• These long-living Bernstein-Greene-Kruskal (BGK) nonlinear  waves sweep in frequency away from
the star ting frequency, with frequency sweep related to the par ticle trapping frequency in the TAE
field:

2/12/12/3 )(; TAEbb Btt δωωδω ∝∝
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MAST: FREQUENCY-SWEEPING MODES ARISING FROM TAEs

Pr imary suspect: hole-clump frequency-sweeping pairs
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MAST: FREQUENCY-SWEEPING MODES ARISING FROM TAEs

For hole-clump triggering:
• Plasma should be near the linear instability threshold.
• Collisional effects should be sufficiently weak to allow an “explosive”  initialisation of holes and

clumps. This means, that the up-chirping modes are likely to be observed at lower densities or
higher temperatures.

             40             50             60              70             80             90             100            110           120  t,ms

f, kHz   300

            200

            100

               0



S.E.Sharapov, M.P.Gryaznevich et al, 10th ST Workshop, 29 September - 1 October 2004, Kyoto, Japan

 

14

INTERPRETING THE SWEEPING MODES WITH HAGIS CODE6

[6] S.D.Pinches et al., Computer  Physics Communications 111 (1998) 133
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INTERPRETING THE SWEEPING MODES WITH HAGIS CODE
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INTERPRETING THE SWEEPING MODES WITH HAGIS CODE

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

-70 -60 -50 -40 -30 -20 -10  0  10  20

G
am

m
a 

Ln
ea

r/
O

m
eg

a

Frequency shift [%]

g(w)/w = a * exp(-((w - w0)/dw)**2)
HAGIS Simulation Data

Growth rate as a function of mode frequency ω.
Up-down symmetric frequency-sweeping modes
are obtained for ωωωω at the maximum point.

Amplitude of the TAE perturbation as a function of
time and frequency. γL/ω=3%; γd/ω=2%.

Absolute amplitude of TAE-per turbation could be estimated from the frequency-sweeping rate [7]

[7] S.D.Pinches et al., Plasma Physics Controlled Fusion 46 (2004) S47
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HIGHER-BETA DISCHARGES: TAEs AT GROWING PRESSURE
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[8] M.P.Gryaznevich, S.E.Sharapov, PPCF 46 (2004) S15
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CHIRPING MODES IN START DISCHARGES

Magnetic perturbations ∂(δBP)/∂t showing
chirping modes detected by the outboard
Mirnov coil.
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CHIRPING MODES IN START DISCHARGES: SOFT X-RAY

Zoom of a single burst showing frequency-
sweeping ‘chirping’  mode on Mirnov coil

Magnetic spectrogram showing amplitude of chirping

modes as function of time and the mode frequency.
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CHIRPING MODES IN START DISCHARGES: SOFT X-RAY

The same frequency-sweeping per turbation
seen by the hor izontal SXR camera with chord
at Z=-6.1 cm. The Four ier  transformed SXR data showing the

same chirping modes
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CHIRPING MODES IN MAST DISCHARGES

Chirping modes similar to those observed on START, are also typical for MAST (example shows MAST
#9109, 1.2 MW of 40 keV NBI at IP flat-top, β≈3%). New: chirping modes with higher n = 3 observed.

NBI
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CHIRPING MODES

• In higher  ββββ discharges, i.e.  5% < ββββ < 15%,  the Alfvén instabilities on MAST and START were

dominated by ‘chirping’  modes9

• These modes are identified as non-per turbative EPMs10-13. Much larger  fractional frequency shift
(δδδδωωωω / ωωωω ∼∼∼∼ 50%) for  chirping modes than that for  hole-clump pairs (δδδδωωωω / ωωωω ≤≤≤≤ 20% ) show that a non-
per turbative EPM tr iggers larger  sweeps than a per turbative TAE similar  to the per turbative vs
non-per turbative fishbone simulation14.

• How these modes behave as ββββ increases fur ther , to ββββ > 15%? Stronger  stabilising effect of thermal
ion Landau damping is expected.

[9] W.W.Heidbr ink, PPCF 37 (1995) 937

[10] L iu Chen, Phys. Plasmas 1 (1994) 1519

[11] F.Zonca, L .Chen, Physics of Plasmas 3 (1996) 323

[12] C.Z.Cheng et al.,  Nuclear  Fusion 35 (1995) 1639

[13] M.P.Gryaznevich, S.E.Sharapov, Nuclear  Fusion 40 (2000) 907

[14] J.Candy, H.L .Berk, B.N.Breizman, F.Porcelli, Physics of Plasmas 6 (1999) 1822
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AMPLITUDE OF CHIRPING MODES AS FUNCTION OF ββββ: START

• On START, the chirping mode amplitude decreases as beta increases.
• No chirping modes observed at beta > 6.5 %.
• Initial increase of mode amplitude with beta may be related to increase in the fast ion

pressure.
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AMPLITUDE OF CHIRPING MODES AS FUNCTION OF ββββ: MAST
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AMPLITUDE OF CHIRPING MODES AS FUNCTION OF ββββ: MAST
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CONCLUSIONS

• STs are a perfect test-bed for studying Alfvén instabilities in a wide range of plasma and fast
ion parameters.

• Both perturbative and non-perturbative Alfén Eigenmodes observed.

• Three different regimes of high-frequency Alfvén instabilities in ST:

1) Low-beta “classical”  TAE regime;
2) Medium-beta “chirping mode”  regime;
3) High-beta, ( ) 10 ≈β , regime relevant for burning ST.

• Low-beta regime shows TAEs & EAEs.

• Pitchfork splitting and frequency-sweeping modes emerging from TAEs are observed.
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• Modelling with the HAGIS code shows that these sweeping modes can be identified as hole-
clump pairs.

• Suppression of TAEs by the pressure effect was investigated. For typical START and MAST
data, no TAEs observed at β > 5%.

• For chirping modes, a decrease in mode amplitude as beta increases was established for both
START and MAST data.

• These findings show that the main Alfvén instabilities driven by gradient of fast ion pressure,
TAEs and the chirping modes are likely to be absent in burning plasma STs with ( ) 10 ≈β .
Remaining known instabilities (fishbones and compressional Alfvén eigenmodes) must be
investigated in the high-beta regimes experimentally.


