INITIAL OPERATION OF THE UPGRADED PEGASUS ST EXPERIMENT

Raymond.J. Fonck University of Wisconsin-Madison

for the PEGASUS team:

- D. Battaglia
- M. Bongard
- S. Burke
- N. Eideitis
- B. Ford
- G. Garstka
- M. Kozar
- B. Lewicki
- E. Unterberg
- G. Winz

presented to the 10th International ST Workshop Kyoto, Japan Sept. 29- Oct. 1, 2004

- PEGASUS: ultra-low A ST designed to study stability limits as A $\!$ and $I_p/I_{TF}>1$
- High β_t and $I_p = I_{TF}$ achieved ohmically
- Low-order tearing modes and ideal kinks limited access to higher I_p/I_{TF}
- Path to high I_p/I_{TF} and β via suppression of instabilities
- After fire: Lab rebuilt with significant upgrades
- Advancing the experiment mission by improving plasma control

Mission: Explore plasma limits as $A \rightarrow 1$

Pegasus is an extremely low-aspect ratio facility exploring quasi-spherical high-pressure plasmas with the goal of minimizing the central column while maintaining good confinement and stability

Original Pegasus Goals:

- Stability and confinement at high I_p/I_{TF}
 - Extension of tokamak studies
- Limits on β_t and I_p/I_{TF} (kink) as A \rightarrow 1
 - Overlap between the tokamak and the spheromak

Planned Future Emphases:

- Support ST program movement to next stages
 - EBW tests for heating & CD (w/PPPL)
 - Noninductive startup tests
 - Novel divertor design tests (w/UT)
 - CT fueling tests (w/UCD)
 - Diagnostics
 - High-pressure gas puff for deep fueling

PEGASUS is University-Scale, Mid-Sized ST

Experimental Parameters					
Parameter	Achieved	Phase II Goals			
А	1.15-1.3	1.12-1.3			
R (m)	0.2-0.38	0.2-0.45			
I _p (MA)	≤0.16	≤ 0.30			
I _N (MA/m-T)	6-8	15-20			
RB _t (T-m)	≤ 0.03	≤ 0.1			
κ	1.4–3.7	1.4–3.7			
$\tau_{shot}(s)$	≤ 0.02	≤ 0.05			
$n_e (10^{19} \text{ m}^{-3})$	1-5	≤ 10			
$\beta_t(\%)$	≤ 20	>40			
P _{HHFW} (MW)	0.2	1.0			

- + β_t up to 25% and I_N up to 6.5 achieved ohmically
- Low field \rightarrow high I_N and β_t

10th STW Sept.29, 2004 - rjf

- Maximum $I_p \approx I_{TF}$
- Soft limit due to two factors:
 - Large, internal 2/1, 3/2 tearing modes degrade plasma
 - Low shear over most of plasma, high resistivity
 - Reduced Volt-sec as TF decreases

Large resistive MHD instabilities degrade plasma as TF \downarrow

- low B_t and fast $dI_p/dt \rightarrow$ early appearance of low-order q=m/n
 - fixed sine-wave loop voltage
- high resistivity early
- ultra-low $A \rightarrow$ low central shear
- ⇒ Result: rapid growth of tearing modes and large saturated island widths
 - *Most common modes: m*/*n*=2/1, 3/2
 - Leads to decreased C_E , I_p
- $I_p/I_{TF} \approx 1 \Rightarrow q_0 \approx 1.5 2$

Reduced effective Volt-seconds as TF \downarrow

- reduced toroidal field \rightarrow delayed startup
- delayed startup + fixed sine V_{loop} waveform \rightarrow reduced effective V-s

Measured q-profile indicates low central shear

Tangential PHC SXR image

- 2D soft x-ray camera gives q-profile
 - Images soft x-rays
 - Constant-intensity surfaces determined
 - Mapped into flux space
 - G-S equation with SXR constraints
 - Iterate solution until convergence
- Measured q-profile \Rightarrow low central shear

10th STW Sept.29, 2004 - rjf

MHD affected by q-profile tailoring and TF strength

- q-profile tailoring increases plasma performance Discharge tailoring \rightarrow plasmas with reduced MHD activity, increase W and I_p
 - Increased shear, increased $q_0 \Rightarrow$ delay tearing onset
 - MHD amplitude decreases with increasing shear
- Increased toroidal field strength also reduces MHD activity Along $I_p=I_{tf}$ contour: δB \uparrow as TF \downarrow

 - At high TF effect of MHD minimal

 $-C_E = 0.4$

- At lower TF MHD amplitude increases
 - C_F increases
 - Stored energy decreases

 \Rightarrow Access higher I_D/I_{TF}, β_{t} via increased q₀, T_e, shear

PEGASUS Toroidal Experiment University of Wisconsin-Madison

High q₉₅ external kink limit observed

- High I_p plasmas often disrupt
- q₉₅ = 5 observed preceding disruption
 - l_i=0.5 at this time
- DCON analysis ⇒ unstable to n=1 external kink
 m=5 most unstable mode
 - m=5 most unstable mode
- Consistent with theory expectation

Suppression of large internal MHD modes

- Vary $q(\psi)$
- Lower η before $q(\psi)$ approaches low-order rational mode surfaces

Expand access to external kink modes studies

- Plasma time evolution, shape
- Edge conditions and edge currents

• Access to very high β_t regime for stability analysis

- OH access and HHFW heating availability

- Suppress tearing modes early in discharge evolution
 - = Transiently manipulate q during discharge:
 - Increased TF at startup => high I_{tf} , low inductance TF bundle
 - Variable I_p and R_0 control \implies coil-current-waveform control
 - = Reduce resistivity before low-order rationals appear

- Maximize J	=>	V _{loop} control, position & shape control
- Increase ohmic flux	=>	new ohmic power supply
- Use HHFW system	=>	position control, V _{loop} control

- Explore edge kink boundary at high field utilization
 - Manipulate edge shear =>
 - Decrease edge currents =>
 - Manipulate plasma shape =>
 - Manipulate current profile =>

- divertor coils for separatrix & PF shape control
- loop voltage control
- shape control
- V_{loop} control, position control

Power Systems Entirely Replaced

- PWM controlled H-Bridges allow for complete waveform control
- Coil currents increased significantly
- 6 MJ of electrolytic capacitors installed outside of experimental building
- New power buses installed

Low-inductance Toroidal Field Centerstack Installed

- Provides increased, time-variable TF

Lab Infrastructure Improved or Replaced

- Shielded conduits and cable trays installed
- New grounding system installed
- Control and Safety systems upgraded
- Bakeable gas system
- Upgraded AC, air, and water services installed
- Passive Stray field "flux catcher" installed for public safety

Phase I laboratory layout (2002)

PEGASUS Toroidal Experiment University of Wisconsin-Madison

Rebuilt laboratory (June 2004)

Power Systems consist of IGBT/IGCT Solid State H-Bridges

System	Phase I	Phase II	Example
Toroidal	• 60 turns	• 12 turns	
Field	• Quasi-DC	• Time-variable	
	• 150 kA-t max	• up to 450 kA-t	
		• 8 IGBT Bridges	0 Time (s) 0.08
Ohmic	• Half-sine	Programmable	8 – – Phase I
Heating	Waveform	• ±48 KA at 2.7kV	
	• ±40 KA at 10kV	• 12 IGCT Bridges	
			0 Time (s) .035
Equilibrium	• Monolithic coil set	 Independent coils 	0.14-25
Field	• 2 Resonant banks	• 20 IGBT Bridges	Tesla)
	• Waveform constrained by startup concerns	• Evolution free from startup constraints	Phase I Field 0.00 Phase II Field Oliveration Oliveratio Oliveration Oliveration Oliverat
	• No divertor	 Divertor installed 	0.00 Time (s) 0.03

- ABB IGCT 2.8kV@4kA Steady-State ~ 50 cm long
- Many thanks to the HIT Group for their assistance!

10th STW Sept.29, 2004 - rjf

Benefits

- Tailor the current waveform to match the needs of the desired plasma evolution
- PWM controlled modern IGCT/IGBT semiconductors
- More reliability and control with less overall stored energy
- H-Bridge regeneration mode minimizes heating of critical coil sets
- Fault detection and interruption capability
- HIT group: CAMAC based, optically isolated PWM controller

IGBT H-Bridge (2 of up to 28) 900V, 4kA at up to 5kHz

Insulated Gate Bipolar Transistor

PEGASUS Centerstack Assembly and TF Waveform

10th STW Sept.29, 2004 - rjf

Bare TF Assembly

Fully Assembled TF Joint

- Initially using PF power supplies for $OH \Rightarrow$ limited Volt-s and V_{loop}
 - 1st plasma in late May
 - 2 month campaign in Summer 2004
 - Transient suppression and PS stabilization
 - New facility tests and systems shakedown
 - Effects of wall currents with new waveforms
 - Low power startup studies
- Stabilizing operations
 - New power systems stabilized and working as desired
 - Robust to major failures
- Recent upgrades to enhance operations
 - Major grounding change to stabilize PS
 - New diagnostics installed
 - Single plasma gun installed for tests of CD and fueling

Recent Plasma

- · Late Sep Early Oct: Installation of first High-V OH power supplies
- Upcoming campaign in Fall-Winter 2004-2005: Use New Tools
 - Commission new OH system for high-power ops
 - Access to $I_p/I_{tf} > 1$, low-q, high I_N , high β_t regime
 - Introduce separatrix
 - Use gun for startup assist

- Tearing mode suppression
- Characterize ext kink limits
- Install more guns

Typical waveforms for ohmic operations

PEGASUS Toroidal Experiment University of Wisconsin-Madison

Gun installed in lower divertor region

Gun orifice

Time-integrated plasma image

• Current channel follows field line - Maintains helical nature

• Total toroidal current ~ 5 x gun current - $I_p/I_g \approx constant$

PEGASUS Toroidal Experiment University of Wisconsin-Madison

- Current channel follows field line
 - Maintains helical nature

- Current channels merge/reconnect
 - Generates extended plasma

• Total toroidal current > 5 x gun current - *I_p/I_g increases*

Ħ

- Current channels merge/reconnect
 - Generates extended plasma

Plasma Limits Modeled at Ip/Itf ~ 3

EBW heating and current drive of interest for ST regime

- Plasma startup, sustainment
- Applicable to low-field, overdense plasmas
- Of interest to future NSTX development

Basic principles tested on W-7S and CDX

• Need to be tested at significant power levels

Pegasus good candidate for EBW development

- Low-cost 2.45 GHz technology
- Klystrons and waveguide available from PLT
- Need to demonstrate good target plasma control

Working with PPPL to develop best approach

- Modeling
- Hardware
- Experiments

deposition profiles corresponding to the rays in (a)

and (b).

- Phase I ops finished Spring 2002
 - $-I_p/I_{tf} = 1.1$
 - $\hat{\beta_t} = 25\%$
 - Factors found limiting plasma current:
 - + internal resistive modes
 - + V-s limitations
 - + external kinks
- Staged upgrades were proposed to suppress limiting mechanisms
 - Fire initiated a "front-loading" of upgrades
- Upgrades are mostly completed
 - New switching power supplies (final installation now)
 - New capacitor banks
 - New TF centerstack
 - New control code
 - New signal runs and screen room
- Phase II ops have begun
 - Low power OH
 - Plasma gun tests
 - New diagnostic installations